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|. Introduction



Lattice coverings

» A lattice L C R" is a set of the form L = Zvy + - - - + Zv,.

» A covering is a family of balls B,(x;, r), i € I of the same
radius r and center x; such that any x € R” belongs to at
least one ball.

» If L is a lattice, the lattice covering is the covering defined by
taking the minimal value of & > 0 such that L+ B,(0,«) is a
covering.



Empty sphere and Delaunay polytopes

» Def: A sphere S(c, r) of center ¢ and radius r in an
n-dimensional lattice L is said to be an empty sphere if:

(i) |lv—=-c||>rforallvel,
(ii) the set S(c,r) N L contains n+ 1 affinely independent points.
» Def: A Delaunay polytope P in a lattice L is a polytope,
whose vertex-set is L N S(c, r).

» Delaunay polytopes define a tessellation of the Euclidean
space R”

» Lattice Delaunay polytopes have at most 2" vertices.



Covering density

» For a lattice L we define the covering radius p(L) to be the
smallest r such that the family of balls v + B,(0,r) for v € L
cover R".

» The covering density has the expression

~ p(L)"vol(Bs(0,1))

O(L) = >1
(L) det(L) -
with
» 1(L) being the largest radius of Delaunay polytopes
> or

L) = in [|x —
p(L) = maxmin [x -y



Computing covering density
Known methods:

» For the Leech lattice, the covering density was determined
using special enumeration technique of the Delaunay
polytopes of maximum radius.

» For the lattice A3; the covering density was computed by
considering it as a projection of the Leech lattice.

» The only general technique is to enumerate all the Delaunay
polytopes of the lattice.

Algorithm for enumerating the Delaunay polytopes:

» First find one Delaunay polytope by linear programming.

> For each representative of orbit of Delaunay polytope, do the
following:

» Compute the orbits of facets of the polytope (using
symmetries, ...).

» For each facet find the adjacent Delaunay polytope.
» If not equivalent to a known representative, insert it into the

list.
» Finish when all have been treated.



The Niemeier lattices |

» They are the 24-dimensional lattices L with det L =1,
(x,y) € Z, ||x||*> € 2Z. The set of vector of norm 2 is
described by a root lattice

nb | root system | Sqr. Cov. | max. Del. | | Orb. Del. |
1 D24 3 4096 13

2 D1 + Eg 3 4096 18

3 3Es 3 4096 4

4 Ass 5,/2 512 144
5 2D12 3 4096 115
6 A7 + E7 5/2 2402, 2562, 5122 453
7 D1io + 2E7 3 4096 134
8 A1s + Dg 5/2 2402, 2564, 5123 1526
9 3Dg 3 4096 684
10 2A12 5/2 512 13853
11 | A;1 + D7+ E¢ 23/9 512 11685
12 4 8/3 729 250




The Niemeier lattices Il

nb | root system | Sqr. Cov. | | max. Del. | | | Orb. Del. |
13 | 2Ag + Dg 5/2 256°, 5123 61979
14 4Dg 3 256 3605
15 3Ag >5/2 512 > 182113
16 | 2A7 +2D5 | >5/2 256°, 5124 > 237254
17 4Aq >5/2 512 > 110611
18 | 4As+ Dy >5/2 2562, 5123 > 324891
19 6D, 3 4096 17575
20 6A4 >5/2 512 > 272609
21 8A3 >5/2 2562, 5122 > 413084
22 12A, > 8/3 729 > 392665
23 244 3 4096 120011

Conjecture (Alahmadi,

Deza, DS, Solé, 2018):

» Delaunay polytopes of even unimodular lattices have at most
27/2 vertices.

» The Square Covering radius of even unimodular lattices is at
most n/8.



. iso-Delaunay
domains



Gram matrix formalism

» Denote by S” the vector space of real symmetric n X n
matrices and S’ the convex cone of real symmetric positive
definite n X n matrices.

» Take a basis (vi,...,v,) of a lattice L and associate to it the
Gram matrix Gy, = ((vi, vj))1<ij<n € SZ,.

> All geometric information about the lattice can be computed
from the Gram matrices.

» Lattices up to isometric equivalence correspond to SZ, up to
arithmetic equivalence by GL,(Z).

> In practice, Plesken & Souvignier wrote a program isom for
testing arithmetic equivalence and a program autom for
computing automorphism group of lattices.



Equalities and inequalities

» Take M = G, with v = (v1,...,v,) a basis of lattice L.
> If V= (w,...,wy) with w; € Z" are the vertices of a
Delaunay polytope of empty sphere S(c, r) then:

|w; —c|| =r ie w”Mw; — 2w, Mc+ c"Mc = r?
» Substracting one obtains
{W,-TI\/IW,- — WjTI\/IWj} -2 {W,-T — WjT} Mc =0

» Inverting matrices, one obtains Mc = ¢(M) with 1 linear and
so one gets linear equalities on M.

» Similarly ||w — c|| > r translates into a linear inequality on M:
Take V = (w, ..., vn) a simplex (v; € Z"), w € Z". If one
writes w = > 7 o A\jv; with 1 =Y"7 ;)\, then one has

n
lw—c|>rew Mw— Z)\,‘VITMV,' >0
i=0



Iso-Delaunay domains

> Take a lattice L and select a basis vy, ..., vj.

» We want to assign the Delaunay polytopes of a lattice.
Geometrically, this means that

***********************************

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

are part of the same iso-Delaunay domain.

» An iso-Delaunay domain is the assignment of Delaunay
polytopes of the lattice.

Primitive iso-Delaunay

> If one takes a generic matrix M in SZ,, then all its Delaunay

are simplices and so no linear equality are implied on M.
» Hence the corresponding iso-Delaunay domain is of dimension

n(n2+1). they are called primitive




Equivalence and enumeration

» The group GL,(Z) acts on SZ by arithmetic equivalence and
preserve the primitive iso-Delaunay domains.

» Voronoi proved that after this action, there is a finite number
of primitive iso-Delaunay domains.

» Bistellar flipping creates one iso-Delaunay from a given
iso-Delaunay domain and a facet of the domain. In dim. 2:

% \/ | \/ \
/\ = A= /\
» Enumerating primitive iso-Delaunay domains is done

classically:

» Find one primitive iso-Delaunay domain.

» Find the adjacent ones and reduce by arithmetic equivalence.
The algorithm is graph traversal and iteratively finds all the
iso-Delaunay up to equivalence.



The partition of $2, C R? |

(:{l :V)65%0ifandonlyifv2<uwandu>0.




The partition of 52, C R3 I

We cut by the plane u+ w =1 and get a circle representation.

v




The partition of 52, C R3 Il

Primitive iso-Delaunay domains in Sio:




Enumeration results

H Dimension H Nr. L-type \ Nr. primitive H
1 1 1
2 2 1
3 5 1
Fedorov, 1885 Fedorov, 1885
4 52 3
Delaunay & Shtogrin 1973 Voronoi, 1905
5 110244 222
MDS, AG, AS & CW, 2016 | Engel & Gr. 2002
6 ? >2.108
Engel, 2013

» Partition in Iso-Delaunay domains is just one example of
polyhedral partition of SZ.

» There are some other theories if we fix only the edges of the
Delaunay polytopes (C-type, Baranovski & Ryshkov 1975).



[Il. SDP optimization



SDP for coverings

» Fix a primitive iso-Delaunay domain, i.e. a collection of
simplexes as Delaunay polytopes Dy, ..., Dp.
» Thm (Minkowski): The function — logdet(M) is strictly
convex on SZ.
» Solve the problem
» M in the iso-Delaunay domain (linear inequalities),
» the Delaunay D; have radius at most 1 (semidefinite condition
by Delaunay, Dolbilin, Ryshkov & Shtogrin, 1970).,
» minimize — log det(M) (strictly convex).
» Thm: Given an iso-Delaunay domain LT, there exist a unique
lattice, which minimize the covering density over LT.

» The above problem is solved by the interior point methods
implemented in MAXDET by Vandenberghe, Boyd & Wu.
This approach was introduced in F. Vallentin, thesis, 2003.

> This allows to solve the lattice covering problem for n <'5.



Packing covering problem

» The packing-covering problem consists in optimizing the
quotient

o(L)

a(L)
with (L) the packing density.

» There is a SDP formulation of this problem (Schiirmann &
Vallentin, 2006) for a given iso-Delaunay domain with
Delaunay Dy, ..., Dp,:

Solve the problem for (o, M):

» M in the iso-Delaunay domain (linear inequalities),
the Delaunay D; have radius at most 1.

a < M([x] for all edges x of Delaunay polytope D;.
maximize «

» The problem is solved for n <5 (Horvath, 1980, 1986).

» Dimension n > 6 are open.

vV vy

» Eg is conjectured to be a local optimum.



IV. 57 y-spaces

£
N




n
2 ,-spaces

v

A S7,-space is a vector space SP of 5", which intersect SZ.

v

We want to describe the Delaunay decomposition of matrices
M e SZ,NSP.
Motivations:

v

» The enumeration of iso-Delaunay is done up to dimension 5
but higher dimension are very difficult.

» We hope to find some good covering by selecting judicious SP.
This is a search for best but unproven to be optimal coverings.

v

A iso-Delaunay in SP is an open convex polyhedral set
included in 52, N SP, for which every element has the same
Delaunay decomposition.

v

Possible choices of spaces (typically we want dimension at
most 4):

» Space of forms invariant under a finite subgroup of GL,(Z).

» Lower dimensional space and a lamination.

» A form A and a rank 1 form defined by a shortest vector of A.



2,-space theory

>

Relevant group is
Aut(SP) = {g € GL,(Z) s.t. gSPg™ = SP}.
For a finite group G C GL,(Z) of space

SP(G) = {A €S"st gAgT = Aforge G}

we have Aut(SP(G)) = Norm(G, GLp(Z)) (Zassenhaus) and
a finite number of iso-Delaunay domains.

There exist some SZ,-spaces having a rational basis and an
infinity of iso-Delaunay domains. Example by Yves Benoist:

SP = R(x* +2y? + 2%) + R(xy)

Another finiteness case is for spaces obtained from GL,(R)
with R number ring.

We can have dead ends if a facet of an SP iso-Delaunay
domains does not intersect SZ.

In practice we often do the computation and establish
finiteness ex-post facto.



Lifted Delaunay decomposition

» The Delaunay polytopes of a lattice L correspond to the
facets of the convex cone C(L) with vertex-set:

{(x,]|x|[?) with x € L} c R

v

N

» See Edelsbrunner & Shah, 1996.



Generalized bistellar flips

» The “glued” Delaunay form a Delaunay decomposition for a
matrix M in the (SP, L)-iso-Delaunay satisfying to f(M) = 0.
» The flipping break those Delaunays in a different way.

» Two triangulations of Z? correspond in the lifting to:

i

> The polytope represented is called the repartitioning polytope.
It has two partitions into Delaunay polytopes.

» The lower facets correspond to one tesselation, the upper
facets to the other tesselation.



Enumeration technique

» Find a primitive (SP, L)-iso-Delaunay domain, insert it to the
list as undone.
> lterate
» For every undone primitive (SP, L)-iso-Delaunay domain,
compute the facets.
» Eliminate redundant inequalities.
» For every non-redundant inequality realize the flipping, i.e.
compute the adjacent primitive (SP, L)-iso-Delaunay domain.
If it is new, then add to the list as undone.

» See for full details DS, Vallentin, Schirmann, 2008.
» Then we solve the SDP problem on all the obtained primitive

iso-Delaunay domains and get the get covering density in the
subspace.



Best known lattice coverings

lattice / covering density ©

o
SEBowo~oorwN R

Zr1
A3 (Kershner) 1.209199
A% (Bambah) 1.463505
A} (Delaunay & Ryshkov) 1.765529
A? (Ryshkov & Baranovski) 2.124286
L¢ (Vallentin) 2.464801
LS (Schiirmann & Vallentin) 2.900024
Lg (Schiirmann & Vallentin) 3.142202
LS (DSV) 4.268575
LS, (DSV) 5.154463
LS, (DSV) 5.505591
LS, (DSV) 7.465518

13
14
15
16
17
18
19
20
21
22
23
24

LS, (DSV) 7.762108
L¢, (DSV) 8.825210
LSs (DSV) 11.004951
A} 15.310927
A, (DSV) 12.357468
Alg 21.840949
A3 (DSV) 21.229200
AL, (DSV) 20.366828
Al (DSV) 27.773140
A3, (Smith) < 27.8839
A3; (Smith, MDS) 15.3218
Leech 7.903536

For n <5 the results are definitive.
The lattices A], for r dividing n+ 1 are the Coxeter lattices.
They are often good coverings and they are used for

perturbations.

For dimensions 10 and 12 we use laminations over Coxeter

lattices of dimension 9 and 11.

Leech lattice is conjecturally optimal (it is local optimal

Schiirmann & Vallentin, 2005)




Periodic coverings

» For general point sets the problem is nonlinear and the above
formalism does not apply.

» If we fix a number of translation classes
(a+2Z"YU---U(epm+2Z")

and vary the quadratic form then we get some iso-Delaunay
domains.

» If the ¢; are rational then we have finiteness of the number of
iso-Delaunay domains.

» If the quadratic form belong to a SZ,-space and ¢; are
rational then finiteness is independent of the ¢;.

» Maybe one can get periodic covering for n < 5 better than
lattice coverings.



V. Covering maxima, pessima
and their characterization



Perfect Delaunay polytopes

Instead of considering the whole Delaunay tesselation, one
alternative viewpoint is to consider a single Delaunay polytope.

» Def: A finite set S C Z" is a perfect Delaunay polytope if

» S is the vertex set of a Delaunay polytope for Qp € SZ;.
» The quadratic forms making S a Delaunay are positive
multiple of Q.

» A perfect n-dimensional Delaunay polytope has at least
(";2) — 1 vertices. There is only one way to embed it as a
Delaunay polytope of a lattice.

» Perfect Delaunay can be pretty wild (DS & Rybnikov, 2014):

» They do not necessarily span the lattice.

» A lattice can have several perfect Delaunay polytopes.

» Automorphism group of lattice can be larger than the perfect
Delaunay.

> For a given polytope P with vert P C 7" the set of quadratic
forms having P as a Delaunay is the interior of a polyhedral
cone.



Enumeration results for perfect Delaunay and simplices

» The opposite of a perfect Delaunay is a Delaunay simplex
which has just n+ 1 vertices.

> It turns out the right space for studying a single Delaunay
polytopes is the Erdahl cone defined as

Erdahl(n) = {f € Ex(n) s.t. f(x) >0 for x € Z"}

with Ex(n) the space of quadratic functions on R”.

» Known results:

H dim. H Nr. Perf. Del. \ Nr. Del. simplex H

1 1(]0,1]) 1

2,34 0 1
5 0 2
6 1 (Sch) (Deza & D., 2004) 3
7 2 (Gos, ERy) (DS, 2017) 11 (DS, 2017)
8 > 26 (DS, Erdahl, Rybnikov 2007) ?
9 > 100000 ?




Covering Maxima and Eutacticity

» A given lattice L is called a covering maxima if for any lattice
L’ near L we have O(L') < O(L).

» Def: Take a Delaunay polytope P for a quadratic form @ of
center cp and square radius pp. P is called eutactic if there
are «, > 0 so that

1 = > a,

vevert P
0 = Z OZV(V - CP)7
vEvert P
el = Y a(v—cp)(v—cp)'.
vevert P

» Thm: For a lattice L the following are equivalent:
» L is a covering maxima
» Every Delaunay polytope of maximal circumradius of L is
perfect and eutactic.
> It is an analogue of a similar result for perfect forms by
Voronoi.
» See DS, Schiirmann, Vallentin, 2012.



The infinite series

Thm (DSV, 2012): For any n > 6 there exist one lattice L(DS,)
which is a covering maxima.

There is only one orbit of perfect Delaunay polytope P(DS,) of
maximal radius in L(DS,).

» We have

1+2(n—1)+2"2 if nis even

vere(P(05)| = { 1R D e

» We have L(DSﬁ) = E6 and L(D57) = E7.

» Conj: L(DS,) has the maximum covering density among all
n-dim. covering maxima.
If true this would imply Minkowski conjecture by Shapira,
Weiss, 2017.

» Conj: Among all perfect Delaunay polytopes, P(DS,) has

» maximum number of vertices,
» maximum volume.



Pessimum and Morse function property

» For a lattice L let us denote Dt(L) the space of direction d
of deformation of L such that © increases in the direction d.

» Def: A lattice L is said to be a covering pessimum if the space

D+ is of measures 0.

» Thm (DSV, 2012): If the Delaunay polytopes of maximum
circumradius of a lattice L are eutactic and are not simplices

then L is a pessimum.

name # vertices | # orbits Delaunay polytopes
VA 2n 1
Da 8
D, (n>5) on—1 2
EZ 9 1
E3 16 1
Es 16 2
Kiz 81 4

» Thm (DSV, 2012): The covering density function Q — ©(Q)
is a topological Morse function if and only if n < 3.



