Lattice coverings

Mathieu Dutour Sikirić
Rudjer Bošković Institute, Croatia

April 13, 2018

I. Introduction

Lattice coverings

- A lattice $L \subset \mathbb{R}^{n}$ is a set of the form $L=\mathbb{Z} v_{1}+\cdots+\mathbb{Z} v_{n}$.
- A covering is a family of balls $B_{n}\left(x_{i}, r\right), i \in I$ of the same radius r and center x_{i} such that any $x \in \mathbb{R}^{n}$ belongs to at least one ball.

- If L is a lattice, the lattice covering is the covering defined by taking the minimal value of $\alpha>0$ such that $L+B_{n}(0, \alpha)$ is a covering.

Empty sphere and Delaunay polytopes

- Def: A sphere $S(c, r)$ of center c and radius r in an n-dimensional lattice L is said to be an empty sphere if:
(i) $\|v-c\| \geq r$ for all $v \in L$,
(ii) the set $S(c, r) \cap L$ contains $n+1$ affinely independent points.
- Def: A Delaunay polytope P in a lattice L is a polytope, whose vertex-set is $L \cap S(c, r)$.

- Delaunay polytopes define a tessellation of the Euclidean space \mathbb{R}^{n}
- Lattice Delaunay polytopes have at most 2^{n} vertices.

Covering density

- For a lattice L we define the covering radius $\mu(L)$ to be the smallest r such that the family of balls $v+B_{n}(0, r)$ for $v \in L$ cover \mathbb{R}^{n}.

- The covering density has the expression

$$
\Theta(L)=\frac{\mu(L)^{n} \operatorname{vol}\left(B_{n}(0,1)\right)}{\operatorname{det}(L)} \geq 1
$$

with

- $\mu(L)$ being the largest radius of Delaunay polytopes
- or

$$
\mu(L)=\max _{x \in \mathbb{R}^{n}} \min _{y \in L}\|x-y\|
$$

Computing covering density

Known methods:

- For the Leech lattice, the covering density was determined using special enumeration technique of the Delaunay polytopes of maximum radius.
- For the lattice Λ_{23}^{*} the covering density was computed by considering it as a projection of the Leech lattice.
- The only general technique is to enumerate all the Delaunay polytopes of the lattice.
Algorithm for enumerating the Delaunay polytopes:
- First find one Delaunay polytope by linear programming.
- For each representative of orbit of Delaunay polytope, do the following:
- Compute the orbits of facets of the polytope (using symmetries, ...).
- For each facet find the adjacent Delaunay polytope.
- If not equivalent to a known representative, insert it into the list.
- Finish when all have been treated.

The Niemeier lattices I

- They are the 24 -dimensional lattices L with $\operatorname{det} L=1$, $\langle x, y\rangle \in \mathbb{Z},\|x\|^{2} \in 2 \mathbb{Z}$. The set of vector of norm 2 is described by a root lattice

nb	root system	Sqr. Cov.	\mid max. Del. \mid	\mid Orb. Del. \|
1	D_{24}	3	4096	13
2	$D_{16}+E_{8}$	3	4096	18
3	$3 E_{8}$	3	4096	4
4	A_{24}	$5 / 2$	512	144
5	$2 D_{12}$	3	4096	115
6	$A_{17}+E_{7}$	$5 / 2$	$240^{2}, 256^{2}, 512^{2}$	453
7	$D_{10}+2 E_{7}$	3	4096	134
8	$A_{15}+D_{9}$	$5 / 2$	$240^{2}, 256^{4}, 512^{3}$	1526
9	$3 D_{8}$	3	4096	684
10	$2 A_{12}$	$5 / 2$	512	13853
11	$A_{11}+D_{7}+E_{6}$	$23 / 9$	512	11685
12	$4 E_{6}$	$8 / 3$	729	250

The Niemeier lattices II

nb	root system	Sqr. Cov.	max. Del. \|	\mid Orb. Del. \|
13	$2 A_{9}+D_{6}$	$5 / 2$	$256^{3}, 512^{3}$	61979
14	$4 D_{6}$	3	256	3605
15	$3 A_{8}$	$\geq 5 / 2$	512	≥ 182113
16	$2 A_{7}+2 D_{5}$	$\geq 5 / 2$	$256^{5}, 512^{4}$	≥ 237254
17	$4 A_{6}$	$\geq 5 / 2$	512	≥ 110611
18	$4 A_{5}+D_{4}$	$\geq 5 / 2$	$256^{2}, 512^{3}$	≥ 324891
19	$6 D_{4}$	3	4096	17575
20	$6 A_{4}$	$\geq 5 / 2$	512	≥ 272609
21	$8 A_{3}$	$\geq 5 / 2$	$256^{2}, 512^{2}$	≥ 413084
22	$12 A_{2}$	$\geq 8 / 3$	729	≥ 392665
23	$24 A_{1}$	3	4096	120911

Conjecture (Alahmadi, Deza, DS, Solé, 2018):

- Delaunay polytopes of even unimodular lattices have at most $2^{n / 2}$ vertices.
- The Square Covering radius of even unimodular lattices is at most $n / 8$.

II. iso-Delaunay domains

Gram matrix formalism

- Denote by S^{n} the vector space of real symmetric $n \times n$ matrices and $S_{>0}^{n}$ the convex cone of real symmetric positive definite $n \times n$ matrices.
- Take a basis $\left(v_{1}, \ldots, v_{n}\right)$ of a lattice L and associate to it the Gram matrix $G_{v}=\left(\left\langle v_{i}, v_{j}\right\rangle\right)_{1 \leq i, j \leq n} \in S_{>0}^{n}$.
- All geometric information about the lattice can be computed from the Gram matrices.
- Lattices up to isometric equivalence correspond to $S_{>0}^{n}$ up to arithmetic equivalence by $\mathrm{GL}_{n}(\mathbb{Z})$.
- In practice, Plesken \& Souvignier wrote a program isom for testing arithmetic equivalence and a program autom for computing automorphism group of lattices.

Equalities and inequalities

- Take $M=G_{v}$ with $v=\left(v_{1}, \ldots, v_{n}\right)$ a basis of lattice L.
- If $V=\left(w_{1}, \ldots, w_{N}\right)$ with $w_{i} \in \mathbb{Z}^{n}$ are the vertices of a Delaunay polytope of empty sphere $S(c, r)$ then:

$$
\left\|w_{i}-c\right\|=r \text { i.e. } w_{i}^{T} M w_{i}-2 w_{i}^{T} M c+c^{T} M c=r^{2}
$$

- Substracting one obtains

$$
\left\{w_{i}^{T} M w_{i}-w_{j}^{T} M w_{j}\right\}-2\left\{w_{i}^{T}-w_{j}^{T}\right\} M c=0
$$

- Inverting matrices, one obtains $M c=\psi(M)$ with ψ linear and so one gets linear equalities on M.
- Similarly $\|w-c\| \geq r$ translates into a linear inequality on M : Take $V=\left(v_{0}, \ldots, v_{n}\right)$ a simplex $\left(v_{i} \in \mathbb{Z}^{n}\right), w \in \mathbb{Z}^{n}$. If one writes $w=\sum_{i=0}^{n} \lambda_{i} v_{i}$ with $1=\sum_{i=0}^{n} \lambda_{i}$, then one has

$$
\|w-c\| \geq r \Leftrightarrow w^{T} M w-\sum_{i=0}^{n} \lambda_{i} v_{i}^{T} M v_{i} \geq 0
$$

Iso-Delaunay domains

- Take a lattice L and select a basis v_{1}, \ldots, v_{n}.
- We want to assign the Delaunay polytopes of a lattice. Geometrically, this means that

are part of the same iso-Delaunay domain.
- An iso-Delaunay domain is the assignment of Delaunay polytopes of the lattice.

Primitive iso-Delaunay

- If one takes a generic matrix M in $S_{>0}^{n}$, then all its Delaunay are simplices and so no linear equality are implied on M.
- Hence the corresponding iso-Delaunay domain is of dimension $\frac{n(n+1)}{2}$, they are called primitive

Equivalence and enumeration

- The group $\mathrm{GL}_{n}(\mathbb{Z})$ acts on $S_{>0}^{n}$ by arithmetic equivalence and preserve the primitive iso-Delaunay domains.
- Voronoi proved that after this action, there is a finite number of primitive iso-Delaunay domains.
- Bistellar flipping creates one iso-Delaunay from a given iso-Delaunay domain and a facet of the domain. In dim. 2:

- Enumerating primitive iso-Delaunay domains is done classically:
- Find one primitive iso-Delaunay domain.
- Find the adjacent ones and reduce by arithmetic equivalence. The algorithm is graph traversal and iteratively finds all the iso-Delaunay up to equivalence.

The partition of $S_{>0}^{2} \subset \mathbb{R}^{3}$ I

$$
\left(\begin{array}{cc}
\mathrm{u} & \mathrm{v} \\
\mathrm{v} & \mathrm{w}
\end{array}\right) \in S_{>0}^{2} \text { if and only if } \mathrm{v}^{2}<\mathrm{uw} \text { and } \mathrm{u}>0
$$

The partition of $S_{>0}^{2} \subset \mathbb{R}^{3}$ II

We cut by the plane $u+w=1$ and get a circle representation.

The partition of $S_{>0}^{2} \subset \mathbb{R}^{3}$ III

Primitive iso-Delaunay domains in $S_{>0}^{2}$:

Enumeration results

Dimension	Nr. L-type	Nr. primitive
1	1	1
2	2	1
3	5	1
	Fedorov, 1885	Fedorov, 1885
4	52	3
	Delaunay \& Shtogrin 1973	Voronoi, 1905
5	110244	222
	MDS, AG, AS \& CW, 2016	Engel \& Gr. 2002
6	$?$	$\geq 2.10^{8}$
Engel, 2013		

- Partition in Iso-Delaunay domains is just one example of polyhedral partition of $S_{\geq 0}^{n}$.
- There are some other theories if we fix only the edges of the Delaunay polytopes (C-type, Baranovski \& Ryshkov 1975).

III. SDP optimization

SDP for coverings

- Fix a primitive iso-Delaunay domain, i.e. a collection of simplexes as Delaunay polytopes D_{1}, \ldots, D_{m}.
- Thm (Minkowski): The function $-\log \operatorname{det}(M)$ is strictly convex on $S_{>0}^{n}$.
- Solve the problem
- M in the iso-Delaunay domain (linear inequalities),
- the Delaunay D_{i} have radius at most 1 (semidefinite condition by Delaunay, Dolbilin, Ryshkov \& Shtogrin, 1970).,
- minimize $-\log \operatorname{det}(M)$ (strictly convex).
- Thm: Given an iso-Delaunay domain $L T$, there exist a unique lattice, which minimize the covering density over $L T$.
- The above problem is solved by the interior point methods implemented in MAXDET by Vandenberghe, Boyd \& Wu. This approach was introduced in F. Vallentin, thesis, 2003.
- This allows to solve the lattice covering problem for $n \leq 5$.

Packing covering problem

- The packing-covering problem consists in optimizing the quotient

$$
\frac{\Theta(L)}{\alpha(L)}
$$

with $\alpha(L)$ the packing density.

- There is a SDP formulation of this problem (Schürmann \& Vallentin, 2006) for a given iso-Delaunay domain with Delaunay D_{1}, \ldots, D_{m} : Solve the problem for (α, M) :
- M in the iso-Delaunay domain (linear inequalities),
- the Delaunay D_{i} have radius at most 1 .
- $\alpha \leq M[x]$ for all edges x of Delaunay polytope D_{i}.
- maximize α
- The problem is solved for $n \leq 5$ (Horvath, 1980, 1986).
- Dimension $n \geq 6$ are open.
- E_{8} is conjectured to be a local optimum.

IV. $S_{>0}^{n}$-spaces

$S_{>0}^{n}$-spaces

- A $S_{>0}^{n}$-space is a vector space $\mathcal{S P}$ of S^{n}, which intersect $S_{>0}^{n}$.
- We want to describe the Delaunay decomposition of matrices $M \in S_{>0}^{n} \cap \mathcal{S P}$.
- Motivations:
- The enumeration of iso-Delaunay is done up to dimension 5 but higher dimension are very difficult.
- We hope to find some good covering by selecting judicious $\mathcal{S P}$. This is a search for best but unproven to be optimal coverings.
- A iso-Delaunay in $\mathcal{S P}$ is an open convex polyhedral set included in $S_{>0}^{n} \cap \mathcal{S P}$, for which every element has the same Delaunay decomposition.
- Possible choices of spaces (typically we want dimension at most 4):
- Space of forms invariant under a finite subgroup of $\mathrm{GL}_{n}(\mathbb{Z})$.
- Lower dimensional space and a lamination.
- A form A and a rank 1 form defined by a shortest vector of A.

$S_{>0}^{n}$-space theory

- Relevant group is

$$
\operatorname{Aut}(\mathcal{S P})=\left\{g \in \mathrm{GL}_{n}(\mathbb{Z}) \text { s.t. } g \mathcal{S P} g^{T}=\mathcal{S} P\right\}
$$

- For a finite group $G \subset G L_{n}(\mathbb{Z})$ of space

$$
\mathcal{S P}(G)=\left\{A \in S^{n} \text { s.t. } g A g^{T}=A \text { for } g \in G\right\}
$$

we have $\operatorname{Aut}(\mathcal{S P}(G))=\operatorname{Norm}\left(G, \mathrm{GL}_{n}(\mathbb{Z})\right)$ (Zassenhaus) and a finite number of iso-Delaunay domains.

- There exist some $S_{>0}^{n}$-spaces having a rational basis and an infinity of iso-Delaunay domains. Example by Yves Benoist:

$$
\mathcal{S P}=\mathbb{R}\left(x^{2}+2 y^{2}+z^{2}\right)+\mathbb{R}(x y)
$$

- Another finiteness case is for spaces obtained from $\mathrm{GL}_{n}(R)$ with R number ring.
- We can have dead ends if a facet of an $\mathcal{S} P$ iso-Delaunay domains does not intersect $S_{>0}^{n}$.
- In practice we often do the computation and establish finiteness ex-post facto.

Lifted Delaunay decomposition

- The Delaunay polytopes of a lattice L correspond to the facets of the convex cone $\mathcal{C}(L)$ with vertex-set:

$$
\left\{\left(x,\|x\|^{2}\right) \text { with } x \in L\right\} \subset \mathbb{R}^{n+1}
$$

- See Edelsbrunner \& Shah, 1996.

Generalized bistellar flips

- The "glued" Delaunay form a Delaunay decomposition for a matrix M in the ($\mathcal{S P}, L$)-iso-Delaunay satisfying to $f(M)=0$.
- The flipping break those Delaunays in a different way.
- Two triangulations of \mathbb{Z}^{2} correspond in the lifting to:

- The polytope represented is called the repartitioning polytope. It has two partitions into Delaunay polytopes.
- The lower facets correspond to one tesselation, the upper facets to the other tesselation.

Enumeration technique

- Find a primitive $(\mathcal{S P}, L)$-iso-Delaunay domain, insert it to the list as undone.
- Iterate
- For every undone primitive ($\mathcal{S P}, L$)-iso-Delaunay domain, compute the facets.
- Eliminate redundant inequalities.
- For every non-redundant inequality realize the flipping, i.e. compute the adjacent primitive ($\mathcal{S P}, L$)-iso-Delaunay domain. If it is new, then add to the list as undone.
- See for full details DS, Vallentin, Schürmann, 2008.
- Then we solve the SDP problem on all the obtained primitive iso-Delaunay domains and get the get covering density in the subspace.

Best known lattice coverings

\mathbf{d}	lattice / covering density $\boldsymbol{\Theta}$		
1	$\mathbb{Z}^{1} 1$	13	$\mathrm{~L}_{13}^{c}$ (DSV) 7.762108
2	$\mathrm{~A}_{2}^{*}$ (Kershner) 1.209199	14	$\mathrm{~L}_{14}^{c}$ (DSV) 8.825210
3	$\mathrm{~A}_{3}^{*}$ (Bambah) 1.463505	15	$\mathrm{~L}_{15}^{c}$ (DSV) 11.004951
4	$\mathrm{~A}_{4}^{*}$ (Delaunay \& Ryshkov) 1.765529	16	$\mathrm{~A}_{16}^{*} 15.310927$
5	$\mathrm{~A}_{5}^{*}$ (Ryshkov \& Baranovski) 2.124286	17	$\mathrm{~A}_{17}^{9}$ (DSV) 12.357468
6	$\mathrm{~L}_{6}^{c}$ (Vallentin) 2.464801	18	$\mathrm{~A}_{18}^{*} 21.840949$
7	$\mathrm{~L}_{7}^{c}$ (Schürmann \& Vallentin) 2.900024	19	$\mathrm{~A}_{19}^{10}$ (DSV) 21.229200
8	$\mathrm{~L}_{8}^{c}$ (Schürmann \& Vallentin) 3.142202	20	$\mathrm{~A}_{20}^{7}$ (DSV) 20.366828
9	$\mathrm{~L}_{9}^{c}$ (DSV) 4.268575	21	$\mathrm{~A}_{21}^{11}$ (DSV) 27.773140
10	$\mathrm{~L}_{10}^{c}$ (DSV) 5.154463	22	Λ_{22}^{*} (Smith) ≤ 27.8839
11	$\mathrm{~L}_{11}^{c}$ (DSV) 5.505591	23	Λ_{23}^{*} (Smith, MDS) 15.3218
12	$\mathrm{~L}_{12}^{c}$ (DSV) 7.465518	24	Leech 7.903536

- For $n \leq 5$ the results are definitive.
- The lattices A_{n}^{r} for r dividing $n+1$ are the Coxeter lattices.

They are often good coverings and they are used for perturbations.

- For dimensions 10 and 12 we use laminations over Coxeter lattices of dimension 9 and 11.
- Leech lattice is conjecturally optimal (it is local optimal Schürmann \& Vallentin, 2005)

Periodic coverings

- For general point sets the problem is nonlinear and the above formalism does not apply.
- If we fix a number of translation classes

$$
\left(c_{1}+\mathbb{Z}^{n}\right) \cup \cdots \cup\left(c_{M}+\mathbb{Z}^{n}\right)
$$

and vary the quadratic form then we get some iso-Delaunay domains.

- If the c_{i} are rational then we have finiteness of the number of iso-Delaunay domains.
- If the quadratic form belong to a $S_{>0}^{n}$-space and c_{i} are rational then finiteness is independent of the c_{i}.
- Maybe one can get periodic covering for $n \leq 5$ better than lattice coverings.

V. Covering maxima, pessima and their characterization

Perfect Delaunay polytopes

Instead of considering the whole Delaunay tesselation, one alternative viewpoint is to consider a single Delaunay polytope.

- Def: A finite set $S \subset \mathbb{Z}^{n}$ is a perfect Delaunay polytope if
- S is the vertex set of a Delaunay polytope for $Q_{0} \in S_{>0}^{n}$.
- The quadratic forms making S a Delaunay are positive multiple of Q_{0}.
- A perfect n-dimensional Delaunay polytope has at least $\binom{n+2}{2}-1$ vertices. There is only one way to embed it as a Delaunay polytope of a lattice.
- Perfect Delaunay can be pretty wild (DS \& Rybnikov, 2014):
- They do not necessarily span the lattice.
- A lattice can have several perfect Delaunay polytopes.
- Automorphism group of lattice can be larger than the perfect Delaunay.
- For a given polytope P with vert $P \subset \mathbb{Z}^{n}$ the set of quadratic forms having P as a Delaunay is the interior of a polyhedral cone.

Enumeration results for perfect Delaunay and simplices

- The opposite of a perfect Delaunay is a Delaunay simplex which has just $n+1$ vertices.
- It turns out the right space for studying a single Delaunay polytopes is the Erdahl cone defined as

$$
\operatorname{Erdahl}(n)=\left\{f \in E_{2}(n) \text { s.t. } f(x) \geq 0 \text { for } x \in \mathbb{Z}^{n}\right\}
$$

with $E_{2}(n)$ the space of quadratic functions on \mathbb{R}^{n}.

- Known results:

dim.	Nr. Perf. Del.	Nr. Del. simplex
1	$1([0,1])$	1
$2,3,4$	0	1
5	0	2
6	1 (Sch) (Deza \& D., 2004)	3
7	$2\left(\right.$ Gos, $\left.E R_{7}\right)$ (DS, 2017)	11 (DS, 2017)
8	≥ 26 (DS, Erdahl, Rybnikov 2007)	$?$
9	≥ 100000	$?$

Covering Maxima and Eutacticity

- A given lattice L is called a covering maxima if for any lattice L^{\prime} near L we have $\Theta\left(L^{\prime}\right)<\Theta(L)$.
- Def: Take a Delaunay polytope P for a quadratic form Q of center c_{P} and square radius $\mu_{P} . P$ is called eutactic if there are $\alpha_{v}>0$ so that

$$
\left\{\begin{aligned}
1 & =\sum_{v \in \operatorname{vert} P} \alpha_{v} \\
0 & =\sum_{v \in \operatorname{vert} P} \alpha_{v}\left(v-c_{P}\right) \\
\frac{\mu_{P}}{n} Q^{-1} & =\sum_{v \in \text { vert } P} \alpha_{v}\left(v-c_{P}\right)\left(v-c_{P}\right)^{T}
\end{aligned}\right.
$$

- Thm: For a lattice L the following are equivalent:
- L is a covering maxima
- Every Delaunay polytope of maximal circumradius of L is perfect and eutactic.
- It is an analogue of a similar result for perfect forms by Voronoi.
- See DS, Schürmann, Vallentin, 2012.

The infinite series

Thm (DSV, 2012): For any $n \geq 6$ there exist one lattice $L\left(D S_{n}\right)$ which is a covering maxima.
There is only one orbit of perfect Delaunay polytope $P\left(D S_{n}\right)$ of maximal radius in $L\left(D S_{n}\right)$.

- We have

$$
\left|\operatorname{vert}\left(P\left(D S_{n}\right)\right)\right|=\left\{\begin{aligned}
1+2(n-1)+2^{n-2} & \text { if } n \text { is even } \\
4(n-1)+2^{n-2} & \text { if } n \text { is odd }
\end{aligned}\right.
$$

- We have $L\left(D S_{6}\right)=\mathrm{E}_{6}$ and $L\left(D S_{7}\right)=\mathrm{E}_{7}$.
- Conj: $L\left(D S_{n}\right)$ has the maximum covering density among all n-dim. covering maxima.
If true this would imply Minkowski conjecture by Shapira, Weiss, 2017.
- Conj: Among all perfect Delaunay polytopes, $P\left(D S_{n}\right)$ has
- maximum number of vertices,
- maximum volume.

Pessimum and Morse function property

- For a lattice L let us denote $D_{\text {crit }}(L)$ the space of direction d of deformation of L such that Θ increases in the direction d.
- Def: A lattice L is said to be a covering pessimum if the space $D_{\text {crit }}$ is of measures 0 .
- Thm (DSV, 2012): If the Delaunay polytopes of maximum circumradius of a lattice L are eutactic and are not simplices then L is a pessimum.

name	\# vertices	\# orbits Delaunay polytopes
\mathbb{Z}^{n}	2^{n}	1
D_{4}	8	1
$\mathrm{D}_{n}(n \geq 5)$	2^{n-1}	2
E_{6}^{*}	9	1
E_{7}^{*}	16	1
E_{8}	16	2
$\mathrm{~K}_{12}$	81	4

- Thm (DSV, 2012): The covering density function $Q \mapsto \Theta(Q)$ is a topological Morse function if and only if $n \leq 3$.

