Lattice coverings

Mathieu Dutour Sikirić Rudjer Bošković Institute, Croatia

April 13, 2018

I. Introduction

Lattice coverings

- A lattice $L \subset \mathbb{R}^n$ is a set of the form $L = \mathbb{Z}v_1 + \cdots + \mathbb{Z}v_n$.
- A covering is a family of balls B_n(x_i, r), i ∈ I of the same radius r and center x_i such that any x ∈ ℝⁿ belongs to at least one ball.

If L is a lattice, the lattice covering is the covering defined by taking the minimal value of α > 0 such that L + B_n(0, α) is a covering.

Empty sphere and Delaunay polytopes

- Def: A sphere S(c, r) of center c and radius r in an n-dimensional lattice L is said to be an empty sphere if:
 (i) ||v c|| ≥ r for all v ∈ L,
 (ii) the set S(c, r) ∩ L contains n + 1 affinely independent points.
- ▶ Def: A Delaunay polytope P in a lattice L is a polytope, whose vertex-set is $L \cap S(c, r)$.

- ▶ Delaunay polytopes define a tessellation of the Euclidean space ℝⁿ
- ▶ Lattice Delaunay polytopes have at most 2ⁿ vertices.

Covering density

For a lattice L we define the covering radius µ(L) to be the smallest r such that the family of balls v + B_n(0, r) for v ∈ L cover ℝⁿ.

The covering density has the expression

$$\Theta(L) = rac{\mu(L)^n \operatorname{vol}(B_n(0,1))}{\det(L)} \geq 1$$

with

• $\mu(L)$ being the largest radius of Delaunay polytopes

or

$$\mu(L) = \max_{x \in \mathbb{R}^n} \min_{y \in L} \|x - y\|$$

Computing covering density

Known methods:

- For the Leech lattice, the covering density was determined using special enumeration technique of the Delaunay polytopes of maximum radius.
- For the lattice Λ^{*}₂₃ the covering density was computed by considering it as a projection of the Leech lattice.
- The only general technique is to enumerate all the Delaunay polytopes of the lattice.

Algorithm for enumerating the Delaunay polytopes:

- First find one Delaunay polytope by linear programming.
- For each representative of orbit of Delaunay polytope, do the following:
 - Compute the orbits of facets of the polytope (using symmetries, ...).
 - ► For each facet find the adjacent Delaunay polytope.
 - If not equivalent to a known representative, insert it into the list.
- Finish when all have been treated.

The Niemeier lattices I

They are the 24-dimensional lattices L with det L = 1, ⟨x, y⟩ ∈ Z, ||x||² ∈ 2Z. The set of vector of norm 2 is described by a root lattice

nb	root system	Sqr. Cov.	max. Del.	Orb. Del.
1	D ₂₄	3	4096	13
2	$D_{16}+E_8$	3	4096	18
3	3E ₈	3	4096	4
4	A ₂₄	5/2	512	144
5	2D ₁₂	3	4096	115
6	$A_{17}+E_7$	5/2	240 ² , 256 ² , 512 ²	453
7	$D_{10} + 2E_7$	3	4096	134
8	$A_{15}+D_9$	5/2	240 ² , 256 ⁴ , 512 ³	1526
9	3D ₈	3	4096	684
10	2A ₁₂	5/2	512	13853
11	$A_{11} + D_7 + E_6$	23/9	512	11685
12	4E ₆	8/3	729	250

The Niemeier lattices II

nb	root system	Sqr. Cov.	max. Del.	Orb. Del.
13	$2A_9 + D_6$	5/2	256 ³ , 512 ³	61979
14	4D ₆	3	256	3605
15	3A ₈	$\geq 5/2$	512	\geq 182113
16	$2A_7 + 2D_5$	$\geq 5/2$	256 ⁵ , 512 ⁴	\geq 237254
17	4A ₆	$\geq 5/2$	512	\geq 110611
18	$4A_5 + D_4$	$\geq 5/2$	256 ² , 512 ³	\geq 324891
19	6D ₄	3	4096	17575
20	6A4	$\geq 5/2$	512	\geq 272609
21	8A3	$\geq 5/2$	256 ² , 512 ²	\geq 413084
22	12A ₂	$\geq 8/3$	729	\geq 392665
23	24A ₁	3	4096	120911

Conjecture (Alahmadi, Deza, DS, Solé, 2018):

- Delaunay polytopes of even unimodular lattices have at most 2^{n/2} vertices.
- The Square Covering radius of even unimodular lattices is at most n/8.

II. iso-Delaunay domains

Gram matrix formalism

- Denote by Sⁿ the vector space of real symmetric n × n matrices and Sⁿ_{>0} the convex cone of real symmetric positive definite n × n matrices.
- ► Take a basis (v₁,..., v_n) of a lattice L and associate to it the Gram matrix G_v = (⟨v_i, v_j⟩)_{1≤i,j≤n} ∈ Sⁿ_{>0}.
- All geometric information about the lattice can be computed from the Gram matrices.
- ► Lattices up to isometric equivalence correspond to Sⁿ_{>0} up to arithmetic equivalence by GL_n(Z).
- In practice, Plesken & Souvignier wrote a program isom for testing arithmetic equivalence and a program autom for computing automorphism group of lattices.

Equalities and inequalities

- Take $M = G_v$ with $v = (v_1, \ldots, v_n)$ a basis of lattice L.
- If V = (w₁,..., w_N) with w_i ∈ Zⁿ are the vertices of a Delaunay polytope of empty sphere S(c, r) then:

$$||w_i - c|| = r$$
 i.e. $w_i^T M w_i - 2 w_i^T M c + c^T M c = r^2$

Substracting one obtains

$$\left\{w_i^T M w_i - w_j^T M w_j\right\} - 2\left\{w_i^T - w_j^T\right\} M c = 0$$

- Inverting matrices, one obtains Mc = ψ(M) with ψ linear and so one gets linear equalities on M.
- Similarly ||w − c|| ≥ r translates into a linear inequality on M: Take V = (v₀,..., v_n) a simplex (v_i ∈ Zⁿ), w ∈ Zⁿ. If one writes w = ∑ⁿ_{i=0} λ_iv_i with 1 = ∑ⁿ_{i=0} λ_i, then one has

$$\|w - c\| \ge r \Leftrightarrow w^T M w - \sum_{i=0}^n \lambda_i v_i^T M v_i \ge 0$$

Iso-Delaunay domains

- Take a lattice L and select a basis v_1, \ldots, v_n .
- We want to assign the Delaunay polytopes of a lattice. Geometrically, this means that

are part of the same iso-Delaunay domain.

 An iso-Delaunay domain is the assignment of Delaunay polytopes of the lattice.

Primitive iso-Delaunay

- ► If one takes a generic matrix M in Sⁿ_{>0}, then all its Delaunay are simplices and so no linear equality are implied on M.
- Hence the corresponding iso-Delaunay domain is of dimension $\frac{n(n+1)}{2}$, they are called primitive

Equivalence and enumeration

- ► The group GL_n(Z) acts on Sⁿ_{>0} by arithmetic equivalence and preserve the primitive iso-Delaunay domains.
- Voronoi proved that after this action, there is a finite number of primitive iso-Delaunay domains.
- Bistellar flipping creates one iso-Delaunay from a given iso-Delaunay domain and a facet of the domain. In dim. 2:

- Enumerating primitive iso-Delaunay domains is done classically:
 - Find one primitive iso-Delaunay domain.
 - Find the adjacent ones and reduce by arithmetic equivalence.

The algorithm is graph traversal and iteratively finds all the iso-Delaunay up to equivalence.

The partition of $S^2_{>0} \subset \mathbb{R}^3$ l

The partition of $S^2_{>0} \subset \mathbb{R}^3$ II

We cut by the plane u + w = 1 and get a circle representation.

The partition of $S^2_{>0} \subset \mathbb{R}^3$ III

Primitive iso-Delaunay domains in $S_{>0}^2$:

Enumeration results

Dimension	Nr. <i>L</i> -type	Nr. primitive
1	1	1
2	2	1
3	5	1
	Fedorov, 1885	Fedorov, 1885
4	52	3
	Delaunay & Shtogrin 1973	Voronoi, 1905
5	110244	222
	MDS, AG, AS & CW, 2016	Engel & Gr. 2002
6 ?		$\geq 2.10^8$
		Engel, 2013

- Partition in Iso-Delaunay domains is just one example of polyhedral partition of Sⁿ_{>0}.
- There are some other theories if we fix only the edges of the Delaunay polytopes (C-type, Baranovski & Ryshkov 1975).

III. SDP optimization

SDP for coverings

- ► Fix a primitive iso-Delaunay domain, i.e. a collection of simplexes as Delaunay polytopes D₁, ..., D_m.
- ► Thm (Minkowski): The function log det(M) is strictly convex on Sⁿ_{>0}.
- Solve the problem
 - ▶ *M* in the iso-Delaunay domain (linear inequalities),
 - the Delaunay D_i have radius at most 1 (semidefinite condition by Delaunay, Dolbilin, Ryshkov & Shtogrin, 1970).,
 - minimize log det(M) (strictly convex).
- ► Thm: Given an iso-Delaunay domain *LT*, there exist a unique lattice, which minimize the covering density over *LT*.
- The above problem is solved by the interior point methods implemented in MAXDET by Vandenberghe, Boyd & Wu. This approach was introduced in F. Vallentin, thesis, 2003.
- This allows to solve the lattice covering problem for $n \leq 5$.

Packing covering problem

 The packing-covering problem consists in optimizing the quotient

with $\alpha(L)$ the packing density.

- There is a SDP formulation of this problem (Schürmann & Vallentin, 2006) for a given iso-Delaunay domain with Delaunay D₁, ..., D_m: Solve the problem for (α, M):
 - ▶ *M* in the iso-Delaunay domain (linear inequalities),
 - the Delaunay D_i have radius at most 1.
 - $\alpha \leq M[x]$ for all edges x of Delaunay polytope D_i .
 - maximize α
- The problem is solved for $n \leq 5$ (Horvath, 1980, 1986).
- Dimension $n \ge 6$ are open.
- E_8 is conjectured to be a local optimum.

$S_{>0}^{n}$ -spaces

- A $S_{>0}^n$ -space is a vector space SP of S^n , which intersect $S_{>0}^n$.
- We want to describe the Delaunay decomposition of matrices M ∈ Sⁿ_{>0} ∩ SP.
- Motivations:
 - The enumeration of iso-Delaunay is done up to dimension 5 but higher dimension are very difficult.
 - ► We hope to find some good covering by selecting judicious SP. This is a search for best but unproven to be optimal coverings.
- A iso-Delaunay in SP is an open convex polyhedral set included in Sⁿ_{>0} ∩ SP, for which every element has the same Delaunay decomposition.
- Possible choices of spaces (typically we want dimension at most 4):
 - Space of forms invariant under a finite subgroup of $GL_n(\mathbb{Z})$.
 - Lower dimensional space and a lamination.
 - A form A and a rank 1 form defined by a shortest vector of A.

$S_{>0}^{n}$ -space theory

- Relevant group is Aut(SP) = { $g \in GL_n(\mathbb{Z})$ s.t. $gSPg^T = SP$ }.
- For a finite group $G \subset GL_n(\mathbb{Z})$ of space

$$\mathcal{SP}(G) = \left\{ A \in S^n \text{ s.t. } gAg^T = A \text{ for } g \in G \right\}$$

we have $Aut(SP(G)) = Norm(G, GL_n(\mathbb{Z}))$ (Zassenhaus) and a finite number of iso-Delaunay domains.

There exist some Sⁿ_{>0}-spaces having a rational basis and an infinity of iso-Delaunay domains. Example by Yves Benoist:

$$\mathcal{SP} = \mathbb{R}(x^2 + 2y^2 + z^2) + \mathbb{R}(xy)$$

- Another finiteness case is for spaces obtained from GL_n(R) with R number ring.
- ▶ We can have dead ends if a facet of an SP iso-Delaunay domains does not intersect Sⁿ_{>0}.
- In practice we often do the computation and establish finiteness ex-post facto.

Lifted Delaunay decomposition

The Delaunay polytopes of a lattice L correspond to the facets of the convex cone C(L) with vertex-set:

$$\{(x, ||x||^2) \text{ with } x \in L\} \subset \mathbb{R}^{n+1}$$

See Edelsbrunner & Shah, 1996.

Generalized bistellar flips

- ► The "glued" Delaunay form a Delaunay decomposition for a matrix M in the (SP, L)-iso-Delaunay satisfying to f(M) = 0.
- The flipping break those Delaunays in a different way.
- Two triangulations of \mathbb{Z}^2 correspond in the lifting to:

- The polytope represented is called the repartitioning polytope. It has two partitions into Delaunay polytopes.
- The lower facets correspond to one tesselation, the upper facets to the other tesselation.

Enumeration technique

- ► Find a primitive (SP, L)-iso-Delaunay domain, insert it to the list as undone.
- Iterate
 - ► For every undone primitive (SP, L)-iso-Delaunay domain, compute the facets.
 - Eliminate redundant inequalities.
 - ► For every non-redundant inequality realize the flipping, i.e. compute the adjacent primitive (SP, L)-iso-Delaunay domain. If it is new, then add to the list as undone.
- See for full details DS, Vallentin, Schürmann, 2008.
- Then we solve the SDP problem on all the obtained primitive iso-Delaunay domains and get the get covering density in the subspace.

Best known lattice coverings

- For $n \leq 5$ the results are definitive.
- ► The lattices A^r_n for r dividing n + 1 are the Coxeter lattices. They are often good coverings and they are used for perturbations.
- ► For dimensions 10 and 12 we use laminations over Coxeter lattices of dimension 9 and 11.
- Leech lattice is conjecturally optimal (it is local optimal Schürmann & Vallentin, 2005)

Periodic coverings

- For general point sets the problem is nonlinear and the above formalism does not apply.
- If we fix a number of translation classes

$$(c_1 + \mathbb{Z}^n) \cup \cdots \cup (c_M + \mathbb{Z}^n)$$

and vary the quadratic form then we get some iso-Delaunay domains.

- If the c_i are rational then we have finiteness of the number of iso-Delaunay domains.
- ► If the quadratic form belong to a Sⁿ_{>0}-space and c_i are rational then finiteness is independent of the c_i.
- ► Maybe one can get periodic covering for n ≤ 5 better than lattice coverings.

V. Covering maxima, pessima and their characterization

Perfect Delaunay polytopes

Instead of considering the whole Delaunay tesselation, one alternative viewpoint is to consider a single Delaunay polytope.

- ▶ Def: A finite set $S \subset \mathbb{Z}^n$ is a perfect Delaunay polytope if
 - ▶ *S* is the vertex set of a Delaunay polytope for $Q_0 \in S_{>0}^n$.
 - ► The quadratic forms making S a Delaunay are positive multiple of Q₀.
- ▶ Perfect Delaunay can be pretty wild (DS & Rybnikov, 2014):
 - They do not necessarily span the lattice.
 - A lattice can have several perfect Delaunay polytopes.
 - Automorphism group of lattice can be larger than the perfect Delaunay.
- For a given polytope P with vert P ⊂ Zⁿ the set of quadratic forms having P as a Delaunay is the interior of a polyhedral cone.

Enumeration results for perfect Delaunay and simplices

- ► The opposite of a perfect Delaunay is a Delaunay simplex which has just n + 1 vertices.
- It turns out the right space for studying a single Delaunay polytopes is the Erdahl cone defined as

$$Erdahl(n) = \{ f \in E_2(n) \text{ s.t. } f(x) \ge 0 \text{ for } x \in \mathbb{Z}^n \}$$

with $E_2(n)$ the space of quadratic functions on \mathbb{R}^n .

Known results:

dim.	Nr. Perf. Del.	Nr. Del. simplex
1	1([0,1])	1
2,3,4	0	1
5	0	2
6	1 (<i>Sch</i>) (Deza & D., 2004)	3
7	2 (<i>Gos</i> , <i>ER</i> ₇) (DS, 2017)	11 (DS, 2017)
8	\geq 26 (DS, Erdahl, Rybnikov 2007)	?
9	\geq 100000	?

Covering Maxima and Eutacticity

- A given lattice L is called a covering maxima if for any lattice L' near L we have Θ(L') < Θ(L).</p>
- Def: Take a Delaunay polytope P for a quadratic form Q of center c_P and square radius μ_P. P is called eutactic if there are α_v > 0 so that

$$\begin{cases} 1 = \sum_{\substack{v \in \text{vert } P \\ e \neq v \in \text{vert } P}} \alpha_v, \\ 0 = \sum_{\substack{v \in \text{vert } P \\ r \neq v \in \text{vert } P}} \alpha_v (v - c_P), \\ \frac{\mu_P}{n} Q^{-1} = \sum_{\substack{v \in \text{vert } P \\ v \in \text{vert } P}} \alpha_v (v - c_P) (v - c_P)^T. \end{cases}$$

- **•** Thm: For a lattice *L* the following are equivalent:
 - L is a covering maxima
 - Every Delaunay polytope of maximal circumradius of L is perfect and eutactic.
- It is an analogue of a similar result for perfect forms by Voronoi.
- See DS, Schürmann, Vallentin, 2012.

The infinite series

Thm (DSV, 2012): For any $n \ge 6$ there exist one lattice $L(DS_n)$ which is a covering maxima.

There is only one orbit of perfect Delaunay polytope $P(DS_n)$ of maximal radius in $L(DS_n)$.

We have

$$|vert(P(DS_n))| = \begin{cases} 1+2(n-1)+2^{n-2} & \text{if } n \text{ is even} \\ 4(n-1)+2^{n-2} & \text{if } n \text{ is odd} \end{cases}$$

- We have $L(DS_6) = E_6$ and $L(DS_7) = E_7$.
- Conj: L(DS_n) has the maximum covering density among all n-dim. covering maxima.
 If true this would imply Minkowski conjecture by Shapira, Weiss, 2017.
- ▶ Conj: Among all perfect Delaunay polytopes, $P(DS_n)$ has
 - maximum number of vertices,
 - maximum volume.

Pessimum and Morse function property

- For a lattice L let us denote D_{crit}(L) the space of direction d of deformation of L such that Θ increases in the direction d.
- Def: A lattice L is said to be a covering pessimum if the space D_{crit} is of measures 0.
- ► Thm (DSV, 2012): If the Delaunay polytopes of maximum circumradius of a lattice L are eutactic and are not simplices then L is a pessimum.

name	# vertices	# orbits Delaunay polytopes
\mathbb{Z}^n	2 ⁿ	1
D ₄	8	1
$D_n \ (n \ge 5)$	2^{n-1}	2
E ₆ *	9	1
E ₇	16	1
E ₈	16	2
K ₁₂	81	4

Thm (DSV, 2012): The covering density function Q → Θ(Q) is a topological Morse function if and only if n ≤ 3.